Background: Previous studies have shown that mesenteric lymph (ML) has a crucial role in driving the systemic inflammatory response after trauma/hemorrhagic shock (T/HS). The specific mediators in the ML that contribute to its biological activity remain unclear despite decades of study. Exosomes are extracellular vesicles that are shed into body fluids such as serum and urine that can mediate intercellular communication. We hypothesized that exosomes are present in the ML after trauma/shock and are responsible for the biological activity of ML. Methods: Male rats underwent cannulation of the vessels and mesenteric lymph duct. T/HS was induced by laparotomy and 60 minutes of HS (mean arterial pressure, 35 mmHg), followed by resuscitation. The ML was collected during three distinct time periods (pre-shock, shock and resuscitation phase) and subsequently separated into exosome and supernatant fractions. Exosomes were characterized by electron microscope, nanoparticle tracking analysis and immunoblotting. The biological activity of exosomes and supernatant of ML were characterized using a monocyte NF-[kappa]B reporter assay and by measuring macrophage intracellular TNF-[alpha] production. Results: Exosomes were identified in ML by size and expression of the exosome markers CD63 and HSP70. The number of exosomes present in the ML was 2-fold increased during shock and 4-fold decreased in resuscitation phase compared to pre-shock. However, biological activity of exosomes isolated during the resuscitation phase was markedly increased and caused an 8-fold increase in monocyte NF-[kappa]B activation compared to supernatant. Macrophage TNF-[alpha] production was also increased after exposure to exosomes harvested in the resuscitation phase. The ML supernatant fraction had no effect on TNF-[alpha] production during any phase. Conclusions: Our findings show that exosomes, and not the liquid fraction of ML, are the major component triggering inflammatory responses in monocytes and macrophages after experimental T/HS. EVIDENCE LEVEL: V (Basic science) (C) 2016 Lippincott Williams & Wilkins, Inc.
from Emergency Medicine via xlomafota13 on Inoreader http://ift.tt/2eNN5Ph
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
EDITORIAL Pediatric retina: A challenging yet fascinating field p. 179 Wei-Chi Wu DOI :10.4103/tjo.tjo_123_18 [HTML Full text] [PDF] ...
-
Medicine by Alexandros G. Sfakianakis MDPI CancersCancers, Vol. 12, Pages 279: Metabolism of Estrogens: Turnover Differs Between Platinum-...
-
Abstract The aim of many breeding programs for the conservation of genetic biodiversity is to preserve the genetic resources of wild speci...
-
Medicine by Alexandros G. Sfakianakis,Αλέξανδρος Γ. Σφακιανάκης Anaphylaxis Refractory to intra‐muscular adrenaline Anaphylaxis Refractory ...
-
Medicine by Alexandros G. Sfakianakis , Cancer ScienceMdm2 – open questionsAbstract The Mdm2 oncoprotein and its association with p53 were...
-
Helicobacter pylori infection and gastrointestinal tract cancer biology: considering a double-edged sword reflection Adult stem cells at wor...
-
# Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182, High level MYC amplification in B-ce...
-
Journal of visualized experiments : JoVE,http://www.jove.com/ Surface Electromyographic Biofeedback... Journal of visualized experiments : J...
-
H2S can also protect nerve cells. The objective of the study is to investigate the effects of hydrogen sulfide (H2S) on the expressions of b...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου