Objectives: To determine the feasibility of delivering inhaled treprostinil during mechanical ventilation and spontaneous unassisted ventilation using the Tyvaso Inhalation System and the vibrating mesh nebulizer. We sought to compare differences in fine particle fraction, and absolute inhaled treprostinil mass delivered to neonatal, pediatric, and adult models affixed with a face mask, conventional, and high-frequency ventilation between Tyvaso Inhalation System and with different nebulizer locations between Tyvaso Inhalation System and vibrating mesh nebulizer. Design: Fine particle fraction was first determined via impaction with both the Tyvaso Inhalation System and vibrating mesh nebulizer. Next, a test lung configured with neonatal, pediatric, and adult mechanics and a filter to capture medication was attached to a realistic face model during spontaneous breathing or an endotracheal tube during conventional ventilation and high-frequency oscillator ventilator. Inhaled treprostinil was then nebulized with both the Tyvaso Inhalation System and vibrating mesh nebulizer, and the filter was analyzed via high-performance liquid chromatography. Testing was done in triplicate. Independent two-sample t tests were used to compare mean fine particle fraction and inhaled mass between devices. Analysis of variance with Tukey post hoc tests were used to compare within device differences. Setting: Academic children's hospital aerosol research laboratory. Measurements and Main Results: Fine particle fraction was not different between the Tyvaso Inhalation System and vibrating mesh nebulizer (0.78 +/- 0.04 vs 0.77 +/- 0.08, respectively; p = 0.79). The vibrating mesh nebulizer delivered the same or greater inhaled treprostinil than the Tyvaso Inhalation System in every simulated model and condition. When using the vibrating mesh nebulizer, delivery was highest when using high-frequency oscillator ventilator in the neonatal and pediatric models, and with the nebulizer in the distal position in the adult model. Conclusions: The vibrating mesh nebulizer is a suitable alternative to the Tyvaso Inhalation System for inhaled treprostinil delivery. Fine particle fraction is similar between devices, and vibrating mesh nebulizer delivery meets or exceeds delivery of the Tyvaso Inhalation System. Delivery for infants and children during high-frequency oscillator ventilator with the vibrating mesh nebulizer may result in higher than expected dosages. (C)2017The Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
from Emergency Medicine via xlomafota13 on Inoreader http://ift.tt/2qc0F2V
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
These concepts will yield more prepared, capable and resilient communities from EMS via xlomafota13 on Inoreader https://ift.tt/2PRIixV
-
Publication date: Available online 15 March 2018 Source: The Journal of Emergency Medicine Author(s): Eric J. Rebich, Stephanie S. Lee, J...
-
Introduction Over the last five years, the American Association for the Surgery of Trauma (AAST) has developed grading scales for Emergency ...
-
Objectives: To develop and validate an abbreviated version of the Cognitive Failure Questionnaire that can be used by patients as part of s...
-
Abstract Objectives To develop a patient decision aid to promote shared decision-making for stable, alert patients who present to the em...
-
Background: There has been little systematic examination of variation in pediatric burn care clinical practices and its effect on outcomes. ...
-
Background Hemostatic resuscitation principles have significantly changed adult trauma resuscitation over the past decade. Practice patterns...
-
Abstract Introduction The purpose of this study was to investigate the effects of alcohol intoxication in trauma patients in regard to its...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου