Objective: The use of machine-learning algorithms to classify alerts as real or artifacts in online noninvasive vital sign data streams to reduce alarm fatigue and missed true instability. Design: Observational cohort study. Setting: Twenty-four-bed trauma step-down unit. Patients: Two thousand one hundred fifty-three patients. Intervention: Noninvasive vital sign monitoring data (heart rate, respiratory rate, peripheral oximetry) recorded on all admissions at 1/20 Hz, and noninvasive blood pressure less frequently, and partitioned data into training/validation (294 admissions; 22,980 monitoring hours) and test sets (2,057 admissions; 156,177 monitoring hours). Alerts were vital sign deviations beyond stability thresholds. A four-member expert committee annotated a subset of alerts (576 in training/validation set, 397 in test set) as real or artifact selected by active learning, upon which we trained machine-learning algorithms. The best model was evaluated on test set alerts to enact online alert classification over time. Measurements and Main Results: The Random Forest model discriminated between real and artifact as the alerts evolved online in the test set with area under the curve performance of 0.79 (95% CI, 0.67-0.93) for peripheral oximetry at the instant the vital sign first crossed threshold and increased to 0.87 (95% CI, 0.71-0.95) at 3 minutes into the alerting period. Blood pressure area under the curve started at 0.77 (95% CI, 0.64-0.95) and increased to 0.87 (95% CI, 0.71-0.98), whereas respiratory rate area under the curve started at 0.85 (95% CI, 0.77-0.95) and increased to 0.97 (95% CI, 0.94-1.00). Heart rate alerts were too few for model development. Conclusions: Machine-learning models can discern clinically relevant peripheral oximetry, blood pressure, and respiratory rate alerts from artifacts in an online monitoring dataset (area under the curve > 0.87). Copyright (C) by 2016 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
from Emergency Medicine via xlomafota13 on Inoreader http://ift.tt/1PibpkI
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου