Τρίτη 22 Μαρτίου 2016

Serum Amyloid P Contained in Alveolar Fluid From Patients With Acute Respiratory Distress Syndrome Mediates the Inhibition of Monocyte Differentiation into Fibrocyte.

wk-health-logo.gif

Objective: Alveolar fibrocytes are monocyte-derived mesenchymal cells associated with poor prognosis in patients with acute respiratory distress syndrome. Our aims were to determine the following: 1) the ability of monocytes from acute respiratory distress syndrome patients to differentiate into fibrocytes; 2) the influence of the acute respiratory distress syndrome alveolar environment on fibrocyte differentiation; and 3) mediators involved in this modulation, focusing on serum amyloid P. Design: Experimental in vitro investigation. Setting: Two ICUs of a teaching hospital. Patients: Twenty-five patients (19 mild-to-severe acute respiratory distress syndrome and six matched ventilated controls without acute respiratory distress syndrome) were enrolled. Six healthy volunteers served as non-ventilated controls. Interventions: Peripheral blood mononuclear cells were isolated from acute respiratory distress syndrome, ventilated controls, and non-ventilated controls blood and cultured in vitro. Fibrocytes were counted at basal condition and after culture with broncho-alveolar lavage fluid. Plasma and broncho-alveolar lavage fluid serum amyloid P contents were determined by western blot and enzyme-linked immunosorbent assay. Serum amyloid P was located in normal and acute respiratory distress syndrome lung by immunohistochemistry. Measurements and Main Results: Acute respiratory distress syndrome peripheral blood mononuclear cells had a three-fold increased ability to differentiate into fibrocytes compared to ventilated controls or non-ventilated controls. Acute respiratory distress syndrome broncho-alveolar lavage fluid inhibited by 71% (55-94) fibrocyte differentiation compared to saline control. Ventilated controls' broncho-alveolar lavage fluid was a less potent inhibitor (51% [23-66%] of inhibition), whereas non-ventilated controls' broncho-alveolar lavage fluid had no effect on fibrocyte differentiation. Serum amyloid P concentration was decreased in plasma and dramatically increased in broncho-alveolar lavage fluid during acute respiratory distress syndrome. Alveolar serum amyloid P originated, in part, from the release of serum amyloid P associated with lung connective tissue during acute respiratory distress syndrome. Serum amyloid P depletion decreased the inhibitory effect of acute respiratory distress syndrome broncho-alveolar lavage fluid by 60%, whereas serum amyloid P replenishment of serum amyloid P-depleted acute respiratory distress syndrome broncho-alveolar lavage fluid restored their full inhibitory effect. Conclusions: The presence of fibrocytes in the lung during acute respiratory distress syndrome could result in a balance between higher ability of monocytes to differentiate into fibrocytes and the inhibitory effect of the alveolar environment, mainly dependent on serum amyloid P. Copyright (C) by 2016 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

from Emergency Medicine via xlomafota13 on Inoreader http://ift.tt/1LFN8u4

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις