Background: Uncontrolled hemorrhage from vessel injuries within the torso remains a significant source of prehospital trauma mortality. Resuscitative endovascular balloon occlusion of the aorta can effectively control non-compressible hemorrhage, but this minimally invasive technique relies heavily upon imaging not available in the field. Our goal was to develop morphometric roadmaps to enhance the safety and accuracy of fluoroscopy-free endovascular navigation of hemorrhage control devices. Methods: Three-dimensional reconstructions of computed tomography angiography scans from n=122 trauma patients (mean age 47+/-24 years, range 5-93 years, 64 Male/58 Female) were used to measure centerline distances from femoral artery access sites to the major aortic branch artery origins. Morphometric roadmap equations were created using multiple linear regression analysis to predict distances to the origins of the major arteries in the chest, abdomen and pelvis using torso length, demographics, and risk factors as independent variables. A 40-mm long occlusion balloon was then virtually deployed targeting Zones 1 and 3 of the aorta using these equations. Balloon placement accuracy was determined by comparing predicted versus actual measured distances to the target zone locations within the aortas from the database. Results: Torso length and age were the strongest predictors of centerline distances from femoral artery access sites to the major artery origins. Male gender contributed to longer distances while diabetes and smoking were associated with shorter distances. Hypertension, dyslipidemia and coronary artery disease had no effect. Using morphometric roadmaps, virtual occlusion balloon placement accuracy was 100% for Zone 3 of the aorta, compared to 87% accuracy when using torso length alone. Conclusion: Morphometric roadmaps demonstrate potential for improving the safety and accuracy of fluoroscopy-free aortic occlusion balloon delivery. Continued development of minimally invasive hemorrhage control techniques hold promise to improve prehospital mortality for patients with noncompressible exsanguinating torso injuries. Level of evidence: Diagnostic, level III. (C) 2016 Lippincott Williams & Wilkins, Inc.
from Emergency Medicine via xlomafota13 on Inoreader http://ift.tt/1oclf1x
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Purpose The effects of growth hormone (GH) treatment on linear growth and body composition have been studied extensively. Littl...
-
Abstract Haemonchus contortus is a highly pathogenic gastrointestinal nematode of small ruminant animals. In modern intensive farming, li...
-
Abstract Information on the viability of Toxoplasma gondii oocysts is crucial to establish the public health significance of this environ...
-
Abstract Background and Objectives Suvorexant is an orexin receptor antagonist indicated for the treatment of insomnia, characterized by...
-
Abstract Purpose This study examined the effect of different knee flexion angles with a constant hip and knee torque on the muscle force...
-
Most recent California wildfires have killed at least 29 people and destroyed more than 6,400 homes from EMS via xlomafota13 on Inoreader ...
-
Abstract This study reports the influence of foaming temperature on morphological and thermo-mechanical characteristics of polypropylene (...
-
Abstract The flow of information between different regions of the cortex is fundamental for brain function. Researchers use causality dete...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου