Abstract
Objective
To investigate whether radiomic features can be surrogate biomarkers for epidermal growth factor receptor (EGFR) mutation statuses.
Materials and methods
Two hundred ninety six consecutive patients, who underwent CT examinations before operation within 3 months and had EGFR mutations tested, were enrolled in this retrospective study. CT texture features were extracted using an open-source software with whole volume segmentation. The association between CT texture features and EGFR mutation statuses were analyzed.
Results
In the 296 patients, there were 151 patients with EGFR mutations (51%). Logistic analysis identified that lower age (Odds Ratio[OR]: 0.968,95% confidence interval [CI]:0.946~0.990, p = 0.005) and a radiomic feature named GreyLevelNonuniformityNormalized (OR: 0.012, 95% CI:0.000~0.352, p = 0.01) were predictors for exon 19 mutation; higher age (OR: 1.027, 95%CI:1.003~1.052,p = 0.025), female sex (OR: 2.189, 95%CI:1.264~3.791, p = 0.005) and a radiomic feature named Maximum2DDiameterColumn (OR: 0.968, 95%CI:0.946~0.990], p = 0.005) for exon 21 mutation; and female sex (OR: 1.883,95%CI:1.064~3.329, p = 0.030), non-smoking status (OR: 2.070, 95%CI:1.090~3.929, p = 0.026) and a radiomic feature termed SizeZone NonUniformityNormalized (OR: 0.010, 95% CI:0.0001~0.852, p = 0.042) for EGFR mutations. Areas under the curve (AUCs) of combination with clinical and radiomic features to predict exon 19 mutation, exon 21 mutation and EGFR mutations were 0.655, 0.675 and 0.664, respectively.
Conclusion
Several radiomic features are associated with EGFR mutation statuses of lung adenocarcinoma. Combination with clinical files, moderate diagnostic performance can be obtained to predict EGFR mutation status of lung adenocarcinoma. Radiomic features might harbor potential surrogate biomarkers for identification of EGRF mutation statuses.
https://ift.tt/2SOSSXc
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου