Acute traumatic coagulopathy (ATC) is the failure of coagulation homeostasis that can rapidly arise following traumatic injury, hemorrhage, and shock; it is associated with higher injury severity, coagulation abnormalities, and increased blood transfusions. ATC has historically been defined by a prolonged prothrombin time (PT), although newer, more informative measurements of hemostatic function have been employed to improve diagnosis and support clinical decision making. The underlying biochemical mechanisms of and best practice therapeutics for ATC remain under active investigation because of its significant correlation to poor outcomes. The wide range of hypothesized mechanisms for ATC results from the large number of symptoms, phenotypes, and altered states in these patients as observed by multiple research groups. Much like the ancient fable of blind men describing an elephant from their limited perspectives, the limited nature of clinical and laboratory tools used to diagnose coagulopathy or evaluate hemostatic function have made finding causation difficult. The prolonged PT, degree of fibrinolysis, depletion of coagulation factors and inhibitors, and general failure of the blood have all been identified as being primary indicators for ATC. Therapeutic interventions including recombinant coagulation factors, anti-fibrinolytics, and blood products have been used with varying degrees of success as they are employed to address specific symptoms. To truly understand the causes of ATC, research efforts must recognize the complexity of the hemostatic system and get to the heart of the matter by answering the question, "Is ATC a pathological condition that develops from the observed deficiencies in coagulation, fibrinolysis, and autoregulation, or is ATC an adaptive response generated as the body attempts to restore perfusion and avoid massive organ failure?" Since patient management must proceed without definitive answers regarding the entire causative chain, the current therapeutic focus should be on using what knowledge has been gained to the patient's advantage: control hemorrhage, maintain appropriate homeostatic balances of coagulation proteins, and restore oxygen perfusion. (C) 2017 Lippincott Williams & Wilkins, Inc.
from Emergency Medicine via xlomafota13 on Inoreader http://ift.tt/2obzjc8
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Publication date: Available online 15 March 2018 Source: The Journal of Emergency Medicine Author(s): Eric J. Rebich, Stephanie S. Lee, J...
-
Background Hemostatic resuscitation principles have significantly changed adult trauma resuscitation over the past decade. Practice patterns...
-
Abstract Introduction The purpose of this study was to investigate the effects of alcohol intoxication in trauma patients in regard to its...
-
Traumatic brain injury (TBI) is the leading cause of death among trauma patients. Patients under antithrombotic therapy (ATT) carry an incre...
-
Objectives: To review women’s participation as faculty at five critical care conferences over 7 years. Design: Retrospective analysis of fiv...
-
Objectives: To develop an acute kidney injury risk prediction model using electronic health record data for longitudinal use in hospitalized...
-
Abstract The flow of information between different regions of the cortex is fundamental for brain function. Researchers use causality dete...
-
We investigated the ability of bispectral index (BIS) monitoring to predict poor neurological outcome in out-of-hospital cardiac arrest (OHC...
-
Introduction Over the last five years, the American Association for the Surgery of Trauma (AAST) has developed grading scales for Emergency ...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου